

New and Upcoming Satellite Capabilities for Air Quality Monitoring

Melanie Follette-Cook, Pawan Gupta, and Bryan Duncan

NASA Remote Sensing for Air Quality Applications, March 20-23, 2018, Jakarta, Indonesia

VIIRS

Visible Infrared Imaging Radiometer (VIIRS)

A multi-wavelength imager like MODIS with <u>similar</u> wavelength bands VIIRS is a continuous mission until 2038 - another VIIRS launched on JPSS-1in Nov 2017

	MODIS	VIIRS
Orbit Altitude	690 km	824 km
Equator Crossing Time	13:30 LT	13:30 LT
Granule Size	5 min	86 sec
Swath	2,330 km	3,000 km
Pixel Nadir	0.5 km	0.75 km
Pixel Edge	2 km	1.5 km

VIIRS and MODIS

VIIRS

Nov 24, 2011

MODIS (Aqua)

Nov 24, 2011

GOES-East & HIMAWARI-8

Breaking the Temporal Barrier

The beginning of a new era in satellite remote sensing of air quality

GOES-16

METEOSAT-8

HIMAWARI-9

HIMAWARI-8 Loop: Fire Smoke over Indonesia

Image: CIMSS Satellite Blog: http://cimss.ssec.wisc.edu/goes/blog/archives/19897

TROPOMI

TROPOspheric Monitoring Instrument (TROPOMI)

TROPOMI Highlights

- Launched on October 13
 2017 by the European Space
 Agency
- Global Coverage
- Sub-urban spatial resolution (3.5 x 7 km²)
- 1x/day: NO₂, ozone (0-2 km vertical), aerosol, clouds, formaldehyde, glyoxal, SO₂, CO, methane

TROPOMI: Impact of Resolution

OMI NO₂ (Real Data)

TROPOMI data courtesy of ESA

TROPOMI NO₂ (Real Data)

Spatial Resolution = $3.5 \times 7.0 \text{ km}^2$

TROPOMI: Plume Detection

TROPOMI: Too Cloudy

TROPOMI NO₂ (Real Data)

TROPOMI: Mount Agung Eruption

TROPOMI SO₂ (Real Data)

TROPOMI data courtesy of ESA

TROPOMI: California Fires - December 12, 2017

VIIRS

TROPOMI (real data)

TROPOMI: https://www.esa.int/spaceinimages/Images/2017/12/Tracking_aerosols_from_California_s_fires_

Future Satellite Capabilities for Air Quality Applications

Global Pollution Monitoring Constellation (2020s)

- Improved emissions, at common confidence levels, over industrialized Northern Hemisphere
- Improved air quality forecasts and assimilation systems
- Improved assessment, e.g., observations to support United Nations Convention on Long Range Transboundary Air Pollution

Image, courtesy of Jhoon Kim, Andreas Richter; text courtesy of K.Chance

GEMS: Geostationary Environment Monitoring Spectrometer

- Geostationary over East Asia, not including Java, southern Borneo, southern Sumatra
- High Temporal Resolution
 - 1 hr
- High Spatial Resolution
 - $-5.0 \times 15.0 \text{ km}^2$
- Spectral Range
 - 300-500 nm
- Data Products:
 - nitrogen dioxide, sulfur dioxide, formaldehyde, ozone and other aerosols
- Expected Launch: 2019

http://gems1.yonsei.ac.kr/

Sentinel-4

- Geostationary over Europe and North Africa
- High Temporal Resolution
 - -1 hr
- High Spatial Resolution
 - 8 x 8 km² over Europe
- Spectral Range
 - ultraviolet (305-400 nm), visible (400-500 nm) and near-infrared (750-775 nm)
- Data Products:
 - nitrogen dioxide, sulfur dioxide, formaldehyde, ozone and aerosol optical depth
- Expected Launch: 2021

Image credit: **ESA**

TEMPO: Tropospheric Emissions: Monitoring of Air Pollution

- Geostationary over North America
- High Temporal Resolution
 - 1 hr
- High Spatial Resolution
 - $-2.2 \times 4.7 \text{ km}^2$
- Spectral Range
 - 290-740 nm
- Data Products:
 - O₃, NO₂, C₂H₂O₂, aerosols, cloud parameters, & UVB radiation
- Expected Launch: 2021

TEMPO: Tropospheric Emissions: Monitoring of Air Pollution

- Geostationary over North America
- High Temporal Resolution
 - 1 hr
- High Spatial Resolution
 - $-2.2 \times 4.7 \text{ km}^2$
- Spectral Range
 - 290-740 nm
- Data Products:
 - O₃, NO₂, C₂H₂O₂, aerosols, cloud parameters, & UVB radiation
- Expected Launch: 2021

Multi-Angle Imager for Aerosols (MAIA)

- NASA's first health-based mission
- Mission Goal: Assess linkages between different airborne particulate matter types and adverse birth outcomes, cardiovascular and respiratory disease, and premature deaths
- Sun synchronous orbit
- Spatial Resolution: 230 m
- Large Swath Width: 600 km
- Expected Launch: 2021

Multi-Angle Imager for Aerosols (MAIA)

- MAIA measures the radiance and polarization of sunlight scattered by atmospheric aerosols from which the abundance and characteristics of ground-level particulate matter (PM) are derived
- MAIA has the capability to point at a target (i.e., a city) and look at the aerosols from multiple angles to characterize the sizes, compositions, and quantities of particulate matter in air pollution
- MAIA has a MISR-heritage, but can also type aerosols

